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Introduction

• What does chaos mean?

Unpredictability, complex dynamics,

randomness.

• Arises from deterministic dynamics, and

yet information of the initial state is

quickly lost. Bowie & Cotton, 2016

• Lyapunov exponents (λ): Sensitivity to initial conditions.

δx(t) ≈ eλtδx(0).

• Time-scale of exponential separation: Lyapunov time.

tLyapunov = 1/λ.

Major issues with the Lyapunov exponent! 2



Introduction

Lyapunov time does not actually represent chaos time-scales.

The Lyaponov time of the inner solar

system is∼ 5 Myrs. The solar system is

already more than 4.5 Gyrs old!

Mogavero & Laskar, 2021

θ

Sun

Planet
The Lyapunov time corresponds to

dephasing of the orbit. Eccentricities

change over exponentially longer times.

Lyaponov time 6=mixing time.
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Introduction

Notion of exponential separation does not generalize to

quantum systems.

ρ(t = 0) =
∑
m,n

cmn |m〉 〈n| =⇒ ρ(t → ∞) ≈
∑
m

cmm |m〉 〈m| .

No unified picture of chaos.

Proposed definition of both classical and quantum chaos:

Sensitivity to adiabatic changes.1

H(λ) → H(λ+ δλ)

How the system reacts to adiabatic perturbations depends on the
nature of chaos.

Deformations are captured by the Adiabatic Gauge Potential (AGP).

1
Lim, C., Matirko, K., Kim, H., Polkovnikov, A., & Flynn, M.. (2024). Defining classical and quantum chaos through adiabatic

transformations.
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Classical Adiabatic Gauge Potential

Adiabatic Gauge Potential (AGP): Function in the phase space,

Aλ(x, p). Generator of adiabatic deformations.

∂x

∂λ
= {x,Aλ},

∂p

∂λ
= {p,Aλ}.

Aλ

H(λ) H(λ+ δλ)

Small Deformations

of Trajectories

Integrable

Aλ

H(λ) H(λ+ δλ)

Large Deformations

of Trajectories

Chaotic
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Classical Adiabatic Gauge Potential

Claim: The variance of the AGP over a trajectory in phase space

is a measure of chaos on that trajectory.

AGP variance over a trajectory (x(t), p(t)):

σ2(T) =
1

T

∫ T

0
dt A2

λ(x(t), p(t))−
(
1

T

∫ T

0
dt Aλ(x(t), p(t))

)2

AGP variance is computed over a time

window [0, T]→ captures chaotic

behavior within the window.

Onset of chaos is detected when AGP

variance begins to grow
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Classical Adiabatic Gauge Potential

Example: Phase space of an α-FPUT system. AGP variance over

trajectories is plotted as a function of the initial conditions.
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Why the AGP

serves as a sensi-

tive probe of chaos

can be understood

via an analogy to

diffusion.
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An Analogy to Diffusion

AGP along a trajectory evolves as:

dAλ

dt
= − ∂λH(t) + ∂λH︸ ︷︷ ︸ .

Position Velocity

Consider an ensemble of initial conditions, ρ(x, p). If the AGP along

trajectories in this ensemble is identified with positions, ∂λH serves

as the velocity.

Mean squared displacement is analogous to 〈σ2(T)〉.

Fluctuation-Dissipation Relation (FDR):

〈σ2(T)〉 = T

6

∫ T

−T

dt

(
1− |t|

T

)3

〈∂λH(t)∂λH(0)〉c.
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An Analogy to Diffusion

The FDR allows us to probe large-time correlations via the mean

variance of the AGP.

〈σ2(T → ∞)〉 ↔ 〈∂λH(t → ∞)∂λH(0)〉c.

Integrable Systems: Quasi-periodic

correlations.

〈σ2(T → ∞)〉 = constant.

No diffusion
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An Analogy to Diffusion

Non-integrable Systems: Correlations

may appear quasi-periodic over short

time-scales, but eventually decay.

If the decay is slower thanO(1/t):

〈σ2(T → ∞)〉 ∼ Tγ , 1 < γ < 2.

Anomalous diffusion

If the decay is faster thanO(1/t):

〈σ2(T → ∞)〉 ∼ T.

Normal diffusion
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An Analogy to Diffusion

Recipe for identifying regimes of chaos:

〈σ2(T → ∞)〉 ∼


constant, Integrable

Tγ (1 < γ ≤ 2), Weak Chaos (Maximal)

T, Strong Chaos.
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FPUT Systems

1D chain of oscillators

with non-linear

interactions. n− 1 n n+ 11 N

Hamiltonian in Fourier mode space:

H =
N∑

k=1

P2k + ω2
kQ

2
k

2
+ Non-linear terms.

Without non-linearity, Ek =
P2
k
+ω2

k
Q2
k

2 is conserved. Nonlinear part:

α-FPUT β-FPUT

α

3

∑
i,j,k

AijkQiQjQk
β

4

∑
i,j,k,l

BijklQiQjQkQl

Cubic Quartic 12



FPUT Systems

One of the first systems to be

numerically studied. The system was

expected to show equipartition.

FPUT Paradox: If the system is

initialized in a single mode, almost all

the energy returns periodically.
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Reiss & Campbell, 2023

FPUT systems do eventually

thermalize, but over exponentially

long times. Go through a long-lived,

non-thermal,metastable phase.
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Chaos in FPUT Systems

Would like to understand the FPUT problem through the lens of

the AGP.

AGP variance along individual

trajectories:

Blue: Lower energy, σ2(T) plateaus,

trajectory remains in the metastable

state.

Red: Higher energy, σ2(T) grows,

metastable state breaks down.
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To see diffusive behavior, need to choose an ensemble of trajectories.

We consider trajectories initialized in the first mode, with uniformly

distributed phase, and study 〈σ2(T)〉.
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Chaos in FPUT Systems

Transition to weak chaos is observed in both α-FPUT and

β-FPUT systems.
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• Mean AGP variance is initially constant, but grows non-linearly

after the breakdown of the metastable state.

• The growth rate increases with non-linearity.

• “Onset time of chaos” measured w.r.t. a threshold.
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Chaos in FPUT Systems

Chaos is observed much earlier than thermalization.
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The trajectory stays close to an integrable regime while in the

metastable state. During the breakdown of the metastable state, the

trajectory becomes weakly chaotic and starts exploring the rest of

the phase space. Trajectory becomes ergodic when it thermalizes.
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Chaos in FPUT Systems

Transition to strong chaos is observed after thermalization.
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• AGP variance grows linearly.

• Growth rate slows down with

increasing non-linearity.

Growth rate∝ 1/β2. The Lyapunov

time has the same scaling!
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Chaos in FPUT Systems

Numerically demonstrated how the AGP can be used as a probe

of chaos in the FPUT system.

〈σ2(T → ∞)〉 ∼


constant, Integrable → Metastable

Tγ (1 < γ ≤ 2), Weak Chaos → Before thermalization

T, Strong Chaos. → After thermalization

How do we generalize this to other systems?

Not clear how to define AGP in non-Hamiltonian systems (discrete

maps, dissipative systems). Need a more general approach.
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Beyond the AGP

Evolution of a trajectory in phase space:

Integrable regime: A trajectory starts near an integrable regime, and

it remains localized for some time.

Weak regime: The trajectory starts exploriong other parts of the

phase space.

Strong regime: When it visits all of the accessible phase space, it

becomes ergodic.

Ergodic Hypothesis: When a trajectory is ergodic, its time average

converges to its phase space average:

lim
T→∞

1

T

∫ T

0
dt O(t) = 〈O〉,

Claim: How the time average converges to the phase space average

depends on how the observable diffuses, allowing us to probe chaos. 19



Beyond the AGP

Observable drift:

∆(T) =

∫ T

0
dt O(t)− TO.

Measures the separation between the time integral of an observable

and its large-time average. AGP is the drift of the perturbation!

Mean drift variance is a measure of chaos.

σ2(T) =
1

T

∫ T

0
dt ∆2(T)−

(
1

T

∫ T

0
dt ∆(T)

)2

.

〈σ2(T → ∞)〉 ∼ Tγ
−1 ≤ γ < 0 Fixed-Point Attractor

γ = 0 Limit-Cycle / Integrable

1 < γ ≤ 2 Weak Chaos

γ = 1 Strong Chaos
20



Example: Logistic Map

Logistic Map: xn+1 = rxn(1− xn), 0 < r < 4.

Simple, 1D system, with interesting chaotic behavior.
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Example: Logistic Map

We study the drift of xn: ∆N =
N∑

n=0

xn − Nx, variance: 〈σ2
N〉 ∼ Nγ .

0 1 2 3 4

r

−1.0

−0.5

0.0

0.5

1.0

1.5

γ

γ = −1 γ = −1

γ = 0
γ ≈ 1

Drift variance appears

to be a reliable probe

of chaos!
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Conclusions

• Demonstrated how AGP variance is related to observable

diffusion and can probe chaos in FPUT systems.

• Can be generalized to other non-Hamiltonian dynamical

systems, unifying our understanding of chaos.

Further Questions

• Do higher moments of the AGP contain more information about

chaos?

• Study open and driven systems.

• Connection between AGP variance, Lyapunov exponents, and

operator growth?

23



Thank you!
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Adiabatic Gauge Potential

Quantum AGP:

Âλ |n(λ)〉 = i~ ∂λ |n(λ)〉 .

Âλ

H(λ) H(λ+ δλ)

En
er
gy

Elements of the AGP operator:

〈n| Âλ(µ) |m〉 =
iωmn

ω2
mn + µ2

〈n| ∂λH(λ) |m〉 .

The regularizer µ ∼ e−S is added to remove singularities.

AGP norm:

||Âλ(µ)||2 =
1

D
∑
m,n

| 〈m| Âλ(µ) |n〉 |2.



Adiabatic Gauge Potential

Spectral Function: ||Âλ(µ)||2 =
∫ ∞

−∞
dω

ω2

(ω2 + µ2)2
φλ(ω).

φλ(ω) ∼


0, Integrable

ω−1+1/z, Weak Chaos

constant, Strong Chaos

Lim, Matriko, Kim, Polkovnikov, & Flynn, 2024



Adiabatic Gauge Potential

Computing the AGP at a point in the phase space:

Aλ(µ) =
1

2

∫ ∞

−∞
dt sgn(t)e−µ|t|∂λH(t).

AGP on a trajectory:

Aλ(t) = Aλ(0)−
∫ t

0
dτ ∂λH(τ) + t∂λH.



Fermi–Pasta–Ulam–Tsingou (FPUT) Systems

Hamiltonian in normal mode space:

H =
N∑

k=1

P2k + ω2
kQ

2
k

2
+

α

3

N∑
i,j,k=1

AijkQiQjQk +
β

4

N∑
i,j,k,l=1

BijklQiQjQkQl,

with frequencies ω = 2 sin
(

kπ
2(N+1)

)
, and

Aijk =
ωiωjωk√
2(N + 1)

∑
±

[
δi±j±k,0 − δi±j±k,2(N+1)

]
,

Bijkl =
ωiωjωkωl

2(N + 1)

∑
±

[
δi±j±k±l,0 − δi±j±k±l,±2(N+1)

]
.



Fermi–Pasta–Ulam–Tsingou (FPUT) Systems

Spectral entropy:

S = −
N∑

k=1

εk ln εk, εk =
Ek∑N

k′=1 Ek′
.

Rescaled entropy:

η(t) =
S(t)− Smax

S(0)− Smax
.

Equilibrium expectation value:

〈η〉 = 1− γ

Smax − S(0)
.



Logistic Map

Map:

xn+1 = f (xn) = rxn(1− xn), 0 ≤ r ≤ 4.

Fixed points:

x = 0, x = 1− 1/r.

The point x = 0 is stable for r < 1, while x = 1− 1/r is stable for

1 < r < 3.

For r > 3, the limit cycle is formed by the fixed points of the kth

iterate of the map, f (k)(x) = f (f (. . . f (x))). If the 2s-period orbit

becomes stable at rs, then:

lim
s→∞

rs = 3.56994 . . .
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