

Chaos in FPUT-like Systems

Nachiket Karve March 20, 2025

arXiv:2502.12046

Nathan Rose

David Campbell

Introduction

No unified picture of chaos in classical and quantum systems! Classical Systems Quantum Systems

- Defined with respect to sensitivity to initial conditions.
- Probed via Lyapunov exponents.

- Defined with respect to energy level statistics.
- Probed via OTOCs, operator growth, . . .

Both can be probed via sensitivity to adiabatic deformations¹.

Our work: Develop an observable diffusion picture of classical chaos.

¹C. Lim, K. Matirko, H. Kim, A. Polkovnikov, & M. Flynn. (2024). Defining classical and quantum chaos through adiabatic transformations.

Adiabatic Gauge Potential¹ (AGP) in Classical Systems

Consider an adiabatic change:

$$H(\lambda) \to H(\lambda + \delta\lambda)$$

• Deformations of trajectories in the phase space are generated by the AGP, $A_{\lambda}(x, p)$.

$$\frac{\partial x}{\partial \lambda} = \{x, A_{\lambda}\}, \ \frac{\partial p}{\partial \lambda} = \{p, A_{\lambda}\}.$$

¹M. Kolodrubetz, D. Sels, P. Mehta, & A. Polkovnikov. Geometry and non-adiabatic response in quantum and classical systems. Physics Reports. 697:1–87, 2017. ISSN 0370-1573.

AGP in Classical Systems

- Near-integrable trajectory: Small deformations.
- Chaotic trajectory: Large deformations.

 <u>Claim</u>: Variance of the AGP on a trajectory reveals its chaotic nature.

$$\chi_{\lambda}(T) = \frac{1}{T} \int_0^T dt \, \mathcal{A}_{\lambda}^2(x(t), p(t)) - \left(\frac{1}{T} \int_0^T dt \, \mathcal{A}_{\lambda}(x(t), p(t))\right)^2$$

4

An Analogy to Diffusion

Growth of the AGP variance can be interpreted as a diffusion process!

AGP	Diffusive Ensemble	
$\mathcal{A}_{\lambda}(x(t), p(t))$	X(t)	
$\partial_{\lambda}H(x(t),p(t))$	V(t)	
$\chi_{\lambda}(T) \leftrightarrow \langle \partial_{\lambda} H(t) \partial_{\lambda} H(0) \rangle_{c}$	$\langle X^2(T) \rangle \leftrightarrow \langle V(t)V(0) \rangle$	

Fluctuation-dissipation relation: Growth of the AGP variance depends on the large time correlations of the perturbation.

AGP Diffusion

	$\langle \partial_{\lambda} H(t) \partial_{\lambda} H(0) \rangle_{c}$	$\chi_{\lambda}(T \to \infty)$
Integrable	Quasi-Periodic	Constant
Weak Chaos	$\sim 1/ t ^{\gamma}$	$\sim T^{2-\gamma}$
Strong Chaos	$\sim { m e}^{- t/t_S }$	~ T

- Integrable Systems: No diffusion.
- Weakly Chaotic Systems: Anomalous diffusion.
- Strongly Chaotic Systems: Normal diffusion.

β -Fermi-Pasta-Ulam-Tsingou (FPUT) System

Chain of oscillators with quartic interactions.

$$H = \sum_{n=0}^{N} \frac{p_n^2}{2} + \frac{1}{2} (q_{n+1} - q_n)^2 + \frac{1}{4} \beta (q_{n+1} - q_n)^4.$$

- Non-integrable system with long relaxation times.
- Long wavelength initial conditions.

β -FPUT System

Near-integrable to weak chaos transition

β -FPUT System

Weak to strong chaos transition

β -FPUT System

Onset time of chaos

Chaos is observed much sooner than thermalization.

Conclusions

- Adiabatic deformations can be used to probe chaos in classical systems.
- Observable diffusion can be used to characterize the nature of chaos.
- How is it related to Lyapunov exponents?
- Extension to other dynamical systems?

Thank you!

arXiv:2502.12046