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Introduction

The ergodic hypothesis has been a point of debate in physics
for a long time.

Regardless of the initial state of the system, we expect ergodic
systems to achieve ”thermal equilibrium”: occupy the
macro-state which has the highest amount of micro-states.

These assumptions were challenged when in 1953 Enrico
Fermi, John Pasta, Stanislaw Ulam, and Mary Tsingou
(FPUT) numerically studied a chain of oscillators interacting
non-linearly with each other.

It is expected that if one mode of the system is initially
excited, then the energy would flow to other modes over time
and global equipartition would be achieved.



Introduction

Surprisingly, the system exhibited near-periodic behavior;
almost all the energy returns to the original mode.

(a) Original FPUT data for a
system with 32 particles.

(b) Time averaged mode energies
as a function of time.



Introduction

The system seems to get locked in a state different than what
is expected at thermal equilibrium. This ”metastable” state
relaxes to equilibrium over a much bigger timescale.

Our goal is to study the metastable state and to understand
its route to thermal equilibrium. We would like to understand
how the timescale over which the metastable state breaks
down depends on the system parameters.

Another interesting question is whether there exists a critical
energy below which the system does not thermalize. It is
expected that in the thermodynamic limit, N → ∞, this
threshold should vanish, implying that all systems eventually
reach equilibrium.



The (α and β) FPUT Model

Consider a chain of oscillators with non-linear interactions:
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This Hamiltonian can be transformed to the normal mode
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The (α and β) FPUT Model

Energies Ek =
P2
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2 of individual modes are conserved in
the linear system (α = β = 0). Introduction of non-linear
terms allows the energy to flow between different modes.

The spectral entropy is a good measure to characterize how
close the FPUT system is to equilibrium:

S(t) = −
N∑

k=1

ek(t) ln(ek(t)), ek =
Ek∑N
k=1 Ek

. (3)

This entropy goes from 0, when only one mode is excited, to
Smax (= lnN for the α model) when equipartition is achieved.
We therefore introduce the rescaled entropy which takes
values between 0 and 1:

η(t) =
S(t)− Smax

S(0)− Smax
. (4)



The Metastable State

We study an FPUT system at two different energies.

Spectral plots for N = 127, α = β = 0.25, E = 0.635. The
system quickly relaxes to a metastable state.



The Metastable State

Note the ”near-resonance” peaks. They lift the spectrum and
allow the metastable state to relax to equilibrium over a larger
time-scale.



The Metastable State

If we initialize the system with a smaller energy E = 0.0127,
the system is locked in the metastable state for the whole
time.



The Metastable State

Plotting the spectral entropy as a function of time, it is clear
when the metastable state starts to break down. This allows
us to estimate the lifetime of a metastable state.

(a) Rescaled spectral entropy as
a function of time for a 63
particle system with Eα2 = 0.02.

(b) Comparison with the Toda
model, which is an integralable
approximation to the α-FPUT
model.



The Metastable State

The lifetimes of the metastable state in various systems are
plotted as a function of Eα2. For small Eα2 (small energies,
small non-linearities), the lifetime is independent of the system
size. In this limit, the data is observed to follow a power law.

It is hard to say whether this graph follows the power law
below the energies plotted above, since these energies cannot
be studied with current computational capabilities.



Conclusions and Further Questions

FPUT systems have two timescales over which they relax to
equilibrium. The system quickly gets locked into a metastable
state, which then slowly moves towards equipartition.

Resonances give rise to local peaks in the FPUT spectrum.
These resonances then diffuse energy to near-by modes,
resulting in the spectrum being lifted. Could be explained by
the 4 and 6 wave resonances proposed by Lvov [BHLO19].

Lifetime of the metastable state was measured by comparing
it with the Toda model. Increasing energy/non-linearity
hastens the breakdown of the metastable state. At small
energies the lifetime is independent of system size. Cannot say
whether there exists a critical energy threshold.

Flach, et al [FIK06] have shown the existence of q-breathers
in FPUT systems, which are special periodic states. We would
like to understand how they affect the evolution of the
metastable state.
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